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Manjul Bhargava’s work on higher composition laws amply deals

with issues that arise in congenially detailing an algorithm for

multiplication of ideals in quadratic fields. I briefly illustrate

Bhargava’s work by giving my take on its application to the well

known quadratic case, hoping thereby to instance and hint at its

generalisations to cubic, and quartic fields.
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Manjul Bhargava’s work on higher composition laws amply deals

with issues that arise in congenially detailing an algorithm for

multiplication of ideals in quadratic fields. I briefly illustrate

Bhargava’s work by giving my take on its application to the well

known quadratic case, hoping thereby to instance and hint at its

generalisations to cubic, and quartic fields.

‘My take’ is only little more than an explanation of sorts of Dan

Shanks’s infrastructural composition, see

Daniel Shanks, ‘On Gauss and composition’, in Number Theory

and Applications, (NATO – Advanced Study Institute, Banff,

1988) Kluwer Academic Publishers Dordrecht, 1989, 163–204 .

I first looked at a cubic analogue of these notions late in the past

milennium. and again in 2001, then jointly with Renate Scheidler.

Inappropriately, we looked at composition of ternary cubic forms.
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Composition of Quadratic Forms

The product of two quadratic forms ϕ = UX2 + V XY + WY 2 and

ϕ′ = U ′X ′2 + V ′X ′Y ′ + W ′Y ′2 is a nasty expression

UU ′X2X ′2 + UV ′X2X ′Y ′ + UW ′X2Y ′2 + V U ′XX ′2Y + · · · etc.
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Suppose, however, that it happens to happen that there is a
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x = AxXX ′ + BxXY ′ + CxX ′Y + DxY Y ′
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Composition of Quadratic Forms

The product of two quadratic forms ϕ = UX2 + V XY + WY 2 and

ϕ′ = U ′X ′2 + V ′X ′Y ′ + W ′Y ′2 is a nasty expression

UU ′X2X ′2 + UV ′X2X ′Y ′ + UW ′X2Y ′2 + V U ′XX ′2Y + · · · etc.

Suppose, however, that it happens to happen that there is a

bilinear substitution

x = AxXX ′ + BxXY ′ + CxX ′Y + DxY Y ′

y = AyXX ′ + ByXY ′ + CyX ′Y + DyY Y ′

whereby that product becomes Φ = ux2 + vxy + wy2 .

Then we have a much more palatable “product” and, moreover,

we may then report that the form Φ is a compound of the given

forms ϕ and ϕ′ .
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All of this should be completely familiar. Everyone knows the

evident instance

(X2 + Y 2)(X ′2 + Y ′2) = x2 + y2 with x = XX ′ − Y Y ′ , y = XY + X ′Y ,
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noticed that the product of two primes represented by

2x2 + 2xy + 3y2 is represented by x2 + 5y2 .

ceNTRe for Number Theory Research, Sydney



Composition of forms Richard Brent 60 July 21, 2006 2

All of this should be completely familiar. Everyone knows the

evident instance

(X2 + Y 2)(X ′2 + Y ′2) = x2 + y2 with x = XX ′ − Y Y ′ , y = XY + X ′Y ,

More impressively, one reads in the literature that Fermat had

noticed that the product of two primes represented by

2x2 + 2xy + 3y2 is represented by x2 + 5y2 . The ‘why that is so’
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All of this should be completely familiar. Everyone knows the

evident instance

(X2 + Y 2)(X ′2 + Y ′2) = x2 + y2 with x = XX ′ − Y Y ′ , y = XY + X ′Y ,

More impressively, one reads in the literature that Fermat had

noticed that the product of two primes represented by

2x2 + 2xy + 3y2 is represented by x2 + 5y2 . The ‘why that is so’

follows from the identity

(2X2 + 2XY + 3Y 2)(2X ′2 + 2XY ′ + 3Y ′2)

= (2XX ′ + XY ′ + X ′Y − 2Y Y ′)2 + 5(XY ′ + XY ′ + Y Y ′)2 .

In other words, x2 + 5y2 is a compound of 2x2 + 2xy + 3y2 with

itself.
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If M =
`

a b
c d

´
, I write ΦM (x, y) = Φ(ax + by, cx + dy), and recall that

the discriminant of ΦM is (det M)2 times that of Φ.
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´
, I write ΦM (x, y) = Φ(ax + by, cx + dy), and recall that

the discriminant of ΦM is (det M)2 times that of Φ.

Now notice that

x = (AxX ′+BxY ′)X+(CxX ′+DxY ′)Y = (AxX+CxY )X ′+(BxX+DxY )Y ′

y = (AyX ′+ByY ′)X+(CyX ′+DyY ′)y = (AyX+CyY )X ′+(ByX+DyY )Y ′ .

Hence we have the identities

ϕ(X, Y )ϕ′(X ′, Y ′) = Φ(x, y) = Φ„
AxX′+BxY ′ CxX′+DxY ′

Ax′+By′ Cx′+Dy′

«(X, Y )

and
ϕ(X, Y )ϕ′(X ′, Y ′) = Φ(x, y) = Φ„

AxX+CxY BxX+DxY
AyX+CyY ByX+DyY

«(X ′, Y ′),

illustrating first that ϕ and ϕ′ each have discriminant a square of

a rational times that of Φ.
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It follows that there is no effective loss of generality in our

supposing henceforth that all three forms ϕ, ϕ′ , and Φ have the

same discriminant.
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It follows that there is no effective loss of generality in our

supposing henceforth that all three forms ϕ, ϕ′ , and Φ have the

same discriminant. Second, we see that

ϕ′(x′, y′)2 =

˛̨̨̨
˛̨AxX ′ + BxY ′ CxX ′ + DxY ′

AyX ′ + ByY ′ CyX ′ + DyY ′

˛̨̨̨
˛̨
2

and

ϕ(x, y)2 =

˛̨̨̨
˛̨AxX + CxY BxX + DxY

AyX + CyY ByX + DyY

˛̨̨̨
˛̨
2

.
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Ay By
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˛̨̨
x2 + (

˛̨̨
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therewith, defining composition.
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Some Difficulties

First, given ϕ and ϕ′ , it may not be entirely obvious just how, or

how best, to determine a 2 by 4 magic matrix
“

Ax Bx Cx Dx

Ay By Cy Dy

”
.
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Some Difficulties

First, given ϕ and ϕ′ , it may not be entirely obvious just how, or

how best, to determine a 2 by 4 magic matrix
“

Ax Bx Cx Dx

Ay By Cy Dy

”
.

Second, it seems one has to obtain

Φ(x, y) = (ByCy −AyDy)x
2

+
`
(AxDy −BxCy)− (AyDx −ByCx)

´
xy

+ (BxCx −AxDx)y2

by brute force calculation
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ceNTRe for Number Theory Research, Sydney



Composition of forms Richard Brent 60 July 21, 2006 5

Some Difficulties

First, given ϕ and ϕ′ , it may not be entirely obvious just how, or

how best, to determine a 2 by 4 magic matrix
“

Ax Bx Cx Dx

Ay By Cy Dy

”
.

Second, it seems one has to obtain

Φ(x, y) = (ByCy −AyDy)x
2

+
`
(AxDy −BxCy)− (AyDx −ByCx)

´
xy

+ (BxCx −AxDx)y2

by brute force calculation, or by looking it up.

Manjul Bhargava’s work on higher composition laws amply deals

with these first two issues. I briefly illustrate my gross vulgarisation

of that work for the present well known quadratic case, so as to

instance its generalisations to cubic, and quartic fields. My

remarks apply without meaningful change to function fields.
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Denote by ω a quadratic irrational integer of norm N and trace

T , and satisfying ω > ω .
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Denote by ω a quadratic irrational integer of norm N and trace

T , and satisfying ω > ω . A typical quadratic element α of a

quadratic field Q(ω) is conventionally written as α = (P + ω)/Q
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Denote by ω a quadratic irrational integer of norm N and trace

T , and satisfying ω > ω . A typical quadratic element α of a

quadratic field Q(ω) is conventionally written as α = (P + ω)/Q,

with Q dividing the norm N + TP + P 2 of its numerator.
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Denote by ω a quadratic irrational integer of norm N and trace

T , and satisfying ω > ω . A typical quadratic element α of a

quadratic field Q(ω) is conventionally written as α = (P + ω)/Q,

with Q dividing the norm N + TP + P 2 of its numerator.

The point is that the said convention is equivalent to guaranteeing

that the Z-module 〈Q, P + ω〉 is an ideal of the domain Z[ω].
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that the Z-module 〈Q, P + ω〉 is an ideal of the domain Z[ω]. That
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〈Q, P + ω〉Z , and forms Q(x− αy)(x− αy). Of course that

correspondence is no better than ‘bi-unique’.
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Denote by ω a quadratic irrational integer of norm N and trace

T , and satisfying ω > ω . A typical quadratic element α of a

quadratic field Q(ω) is conventionally written as α = (P + ω)/Q,

with Q dividing the norm N + TP + P 2 of its numerator.

The point is that the said convention is equivalent to guaranteeing

that the Z-module 〈Q, P + ω〉 is an ideal of the domain Z[ω]. That

provides a correspondence between numbers α = (P + ω)/Q, ideals

〈Q, P + ω〉Z , and forms Q(x− αy)(x− αy). Of course that

correspondence is no better than ‘bi-unique’.

In brief, the ideal treats the sign of Q as irrelevant, the number

−(P + ω)/Q has standard form (−P − T + ω)/Q (note the implicit

presumption that denominators always are positive),
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Denote by ω a quadratic irrational integer of norm N and trace

T , and satisfying ω > ω . A typical quadratic element α of a

quadratic field Q(ω) is conventionally written as α = (P + ω)/Q,

with Q dividing the norm N + TP + P 2 of its numerator.

The point is that the said convention is equivalent to guaranteeing

that the Z-module 〈Q, P + ω〉 is an ideal of the domain Z[ω]. That

provides a correspondence between numbers α = (P + ω)/Q, ideals

〈Q, P + ω〉Z , and forms Q(x− αy)(x− αy). Of course that

correspondence is no better than ‘bi-unique’.

In brief, the ideal treats the sign of Q as irrelevant, the number

−(P + ω)/Q has standard form (−P − T + ω)/Q (note the implicit

presumption that denominators always are positive), and the form

thinks of itself as corresponding to α if its leading coefficient is

positive, but to α if Q is negative
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Denote by ω a quadratic irrational integer of norm N and trace

T , and satisfying ω > ω . A typical quadratic element α of a

quadratic field Q(ω) is conventionally written as α = (P + ω)/Q,

with Q dividing the norm N + TP + P 2 of its numerator.

The point is that the said convention is equivalent to guaranteeing

that the Z-module 〈Q, P + ω〉 is an ideal of the domain Z[ω]. That

provides a correspondence between numbers α = (P + ω)/Q, ideals

〈Q, P + ω〉Z , and forms Q(x− αy)(x− αy). Of course that

correspondence is no better than ‘bi-unique’.

In brief, the ideal treats the sign of Q as irrelevant, the number

−(P + ω)/Q has standard form (−P − T + ω)/Q (note the implicit

presumption that denominators always are positive), and the form

thinks of itself as corresponding to α if its leading coefficient is

positive, but to α if Q is negative (determining the sign of Q

requires a convention as to the fixed sign of coefficients of xy).
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Now set ϕ(x, y) = Q(x−αy)(x−αy), ϕ′(x, y) = Q′(x−α′y)(x−α′y).
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Now set ϕ(x, y) = Q(x− αy)(x− αy), ϕ′(x, y) = Q′(x− α′y)(x− α′y).
Then ω2 − Tω + N = 0, and an intelligent look at the product

G(X − αY )(X ′ − α′Y ′) = (x− α′′y) =

(AxXX ′+BxXY ′+CxX ′Y +DxY Y ′)−α′′(AyXX ′+ByXY ′+CyX ′Y +DyY Y ′) ,

readily reveals the magic matrix M(ϕ, ϕ′) to be0@Ax Bx Cx Dx

Ay By Cy Dy

1A =

0@G B C D

0 Q/G Q′/G −(P + P ′ + T )/G

1A ,
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G(X − αY )(X ′ − α′Y ′) = (x− α′′y) =

(AxXX ′+BxXY ′+CxX ′Y +DxY Y ′)−α′′(AyXX ′+ByXY ′+CyX ′Y +DyY Y ′) ,

readily reveals the magic matrix M(ϕ, ϕ′) to be0@Ax Bx Cx Dx

Ay By Cy Dy

1A =

0@G B C D

0 Q/G Q′/G −(P + P ′ + T )/G

1A ,

with

G = gcd(Q, Q′, P + P + T ) .
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Now set ϕ(x, y) = Q(x− αy)(x− αy), ϕ′(x, y) = Q′(x− α′y)(x− α′y).
Then ω2 − Tω + N = 0, and an intelligent look at the product

G(X − αY )(X ′ − α′Y ′) = (x− α′′y) =

(AxXX ′+BxXY ′+CxX ′Y +DxY Y ′)−α′′(AyXX ′+ByXY ′+CyX ′Y +DyY Y ′) ,

readily reveals the magic matrix M(ϕ, ϕ′) to be0@Ax Bx Cx Dx

Ay By Cy Dy

1A =

0@G B C D

0 Q/G Q′/G −(P + P ′ + T )/G

1A ,

with

G = gcd(Q, Q′, P + P + T ) .

Here B and C are obtained from BQ′ − CQ = G(P − P ′) and the

Euclidean algorithm; that yields D , or one obtains it similarly.
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A crude reformulation of Manjul Bhargava’s wonderful

observations begins with noticing that the two given forms
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A crude reformulation of Manjul Bhargava’s wonderful

observations begins with noticing that the two given forms˛̨̨̨
˛̨Axx + Bxy Cxx + Dxy

Ayx + Byy Cyx + Dyy

˛̨̨̨
˛̨ and

˛̨̨̨
˛̨Axx + Cxy Ayx + Cyy

Bxx + Dxy Byx + Dyy

˛̨̨̨
˛̨
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A crude reformulation of Manjul Bhargava’s wonderful

observations begins with noticing that the two given forms˛̨̨̨
˛̨Axx + Bxy Cxx + Dxy

Ayx + Byy Cyx + Dyy

˛̨̨̨
˛̨ and

˛̨̨̨
˛̨Axx + Cxy Ayx + Cyy

Bxx + Dxy Byx + Dyy

˛̨̨̨
˛̨

may be viewed simply as pairs of opposite faces

(AxBxAyBy, CxDxCyDy) and (AxCxBxDx, AyCyBxDx)

of a cube.
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Ayx + Byy Cyx + Dyy

˛̨̨̨
˛̨ and

˛̨̨̨
˛̨Axx + Cxy Ayx + Cyy

Bxx + Dxy Byx + Dyy

˛̨̨̨
˛̨

may be viewed simply as pairs of opposite faces

(AxBxAyBy, CxDxCyDy) and (AxCxBxDx, AyCyBxDx)

of a cube. Then the third pair (AxAyBxBy, CxCyBxDxDy) of

opposite faces corresponds to the form˛̨̨̨
˛̨Axx + Ayy Cxx + Cyy

Bxx + Byy Dxx + Dyy

˛̨̨̨
˛̨

and, this is the point
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A crude reformulation of Manjul Bhargava’s wonderful

observations begins with noticing that the two given forms˛̨̨̨
˛̨Axx + Bxy Cxx + Dxy

Ayx + Byy Cyx + Dyy

˛̨̨̨
˛̨ and

˛̨̨̨
˛̨Axx + Cxy Ayx + Cyy

Bxx + Dxy Byx + Dyy

˛̨̨̨
˛̨

may be viewed simply as pairs of opposite faces

(AxBxAyBy, CxDxCyDy) and (AxCxBxDx, AyCyBxDx)

of a cube. Then the third pair (AxAyBxBy, CxCyBxDxDy) of

opposite faces corresponds to the form˛̨̨̨
˛̨Axx + Ayy Cxx + Cyy

Bxx + Byy Dxx + Dyy

˛̨̨̨
˛̨

and, this is the point, the “cube law”, which sets the compound of

these three forms to be the trivial form (x− ωy)(x− ωy) of their

common discriminant, naturally defines a compounding of forms.
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Ideals

One readily de-forms the remarks above by noting that

composition immediately provides a rule for multiplying ideals

presented as Z-modules.
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One readily de-forms the remarks above by noting that

composition immediately provides a rule for multiplying ideals

presented as Z-modules. Set α′′ = (p + ω)/q .
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Ideals

One readily de-forms the remarks above by noting that

composition immediately provides a rule for multiplying ideals

presented as Z-modules. Set α′′ = (p + ω)/q . Then

qG
`
Qx− (ω + P )y

´`
Q′x′ − (ω + P ′)y′´ = QQ′`qX − (ω + p)Y

´
,
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Ideals

One readily de-forms the remarks above by noting that

composition immediately provides a rule for multiplying ideals

presented as Z-modules. Set α′′ = (p + ω)/q . Then

qG
`
Qx− (ω + P )y

´`
Q′x′ − (ω + P ′)y′´ = QQ′`qX − (ω + p)Y

´
,

plainly asserting that

〈Q, ω + P 〉〈Q′, ω + P ′〉 = G〈q, ω + p〉
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Ideals

One readily de-forms the remarks above by noting that

composition immediately provides a rule for multiplying ideals

presented as Z-modules. Set α′′ = (p + ω)/q . Then

qG
`
Qx− (ω + P )y

´`
Q′x′ − (ω + P ′)y′´ = QQ′`qX − (ω + p)Y

´
,

plainly asserting that

〈Q, ω + P 〉〈Q′, ω + P ′〉 = G〈q, ω + p〉

if q(x− α′′y)(x− α′′y) is the composite of the two given forms

Q(x− αy)(x− αy) and Q′(x− α′y)(x− α′y).
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Ideals

One readily de-forms the remarks above by noting that

composition immediately provides a rule for multiplying ideals

presented as Z-modules. Set α′′ = (p + ω)/q . Then

qG
`
Qx− (ω + P )y

´`
Q′x′ − (ω + P ′)y′´ = QQ′`qX − (ω + p)Y

´
,

plainly asserting that

〈Q, ω + P 〉〈Q′, ω + P ′〉 = G〈q, ω + p〉

if q(x− α′′y)(x− α′′y) is the composite of the two given forms

Q(x− αy)(x− αy) and Q′(x− α′y)(x− α′y).

Note that the ‘infrastructural composition’ I detail is well defined

on forms or ideals whereas compounding is well defined only on

equivalence classes of forms, or ideals.
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Reduction

I add as an aside that the algorithmic issue in composing pairs of

quadratic forms of course is not cute formulæ but the time taken

to reduce a composite.
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Reduction

I add as an aside that the algorithmic issue in composing pairs of

quadratic forms of course is not cute formulæ but the time taken

to reduce a composite. Dan Shanks’s NUCOMP deals with that

by reducing the magic matrix M(ϕ, ϕ′), whose entries are single

precision (the precision of the data)
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precision coefficients of the raw composite.
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I add as an aside that the algorithmic issue in composing pairs of

quadratic forms of course is not cute formulæ but the time taken

to reduce a composite. Dan Shanks’s NUCOMP deals with that

by reducing the magic matrix M(ϕ, ϕ′), whose entries are single

precision (the precision of the data), rather than the double

precision coefficients of the raw composite. In practice, it

essentially suffices to apply the Euclidean algorithm to the pair

(Bx, By) = (B, Q/G) until one has two remainders of half-precision.
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to reduce a composite. Dan Shanks’s NUCOMP deals with that

by reducing the magic matrix M(ϕ, ϕ′), whose entries are single

precision (the precision of the data), rather than the double

precision coefficients of the raw composite. In practice, it

essentially suffices to apply the Euclidean algorithm to the pair

(Bx, By) = (B, Q/G) until one has two remainders of half-precision.

That also supplies the data necessary to obtain enough of the

reduced magic matrix M(ϕ, ϕ′) to write a reduced composite
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precision (the precision of the data), rather than the double

precision coefficients of the raw composite. In practice, it

essentially suffices to apply the Euclidean algorithm to the pair

(Bx, By) = (B, Q/G) until one has two remainders of half-precision.

That also supplies the data necessary to obtain enough of the

reduced magic matrix M(ϕ, ϕ′) to write a reduced composite and

to compute its position (distance) in the cycle of forms.
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I add as an aside that the algorithmic issue in composing pairs of

quadratic forms of course is not cute formulæ but the time taken

to reduce a composite. Dan Shanks’s NUCOMP deals with that

by reducing the magic matrix M(ϕ, ϕ′), whose entries are single

precision (the precision of the data), rather than the double

precision coefficients of the raw composite. In practice, it

essentially suffices to apply the Euclidean algorithm to the pair

(Bx, By) = (B, Q/G) until one has two remainders of half-precision.

That also supplies the data necessary to obtain enough of the

reduced magic matrix M(ϕ, ϕ′) to write a reduced composite and

to compute its position (distance) in the cycle of forms.

By happy chance, that reduction process also appears in general to

find the ‘nearest’ reduced form (a matter of issue in the real =

indefinite case)
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Reduction

I add as an aside that the algorithmic issue in composing pairs of

quadratic forms of course is not cute formulæ but the time taken

to reduce a composite. Dan Shanks’s NUCOMP deals with that

by reducing the magic matrix M(ϕ, ϕ′), whose entries are single

precision (the precision of the data), rather than the double

precision coefficients of the raw composite. In practice, it

essentially suffices to apply the Euclidean algorithm to the pair

(Bx, By) = (B, Q/G) until one has two remainders of half-precision.

That also supplies the data necessary to obtain enough of the

reduced magic matrix M(ϕ, ϕ′) to write a reduced composite and

to compute its position (distance) in the cycle of forms.

By happy chance, that reduction process also appears in general to

find the ‘nearest’ reduced form (a matter of issue in the real =

indefinite case) apparently because that process reduces to the

‘previous’ reduced form.
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The Cubic Case

One might think that in the cubic case one should look at ternary

cubic forms and therefore at 3× 3× 3 cubes of integers.
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wants, because ideal classes correspond just to the decomposable

forms.
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The Cubic Case

One might think that in the cubic case one should look at ternary

cubic forms and therefore at 3× 3× 3 cubes of integers. A “cube

rule” then does give a composition law, but for more than one

wants, because ideal classes correspond just to the decomposable

forms.

Bhargava explains that the correct box is 2× 3× 3, thus a pair

(A, B) of 3× 3 matrices, and that the unique SL3(Z)× SL3(Z)

invariant is a cubic form

f(x, y) = ax3 + bx2y + cxy2 + dx3 = det(Ax−By) .
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The Cubic Case

One might think that in the cubic case one should look at ternary

cubic forms and therefore at 3× 3× 3 cubes of integers. A “cube

rule” then does give a composition law, but for more than one

wants, because ideal classes correspond just to the decomposable

forms.

Bhargava explains that the correct box is 2× 3× 3, thus a pair

(A, B) of 3× 3 matrices, and that the unique SL3(Z)× SL3(Z)

invariant is a cubic form

f(x, y) = ax3 + bx2y + cxy2 + dx3 = det(Ax−By) .

Hence the unique Γ = GL2(Z)× SL3(Z)× SL3(Z) invariant is the

discriminant Disc(f) of f .
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Bhargava notes that there is a canonical correspondence between

GL2(Z) equivalence classes of integral cubic forms and

isomorphism classes of cubic rings.
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Bhargava notes that there is a canonical correspondence between

GL2(Z) equivalence classes of integral cubic forms and

isomorphism classes of cubic rings.

Specifically, given a cubic ring R (a ring free of rank 3 as a

Z-module), take (1, ω, θ) as a Z -basis for R . A ‘normal’ such basis

has ω · θ ∈ Z and one may define seven integers a, . . . ,n by setting

ωθ = n , ω2 = m + bω − aθ , θ2 = l + dω − cθ .
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isomorphism classes of cubic rings.

Specifically, given a cubic ring R (a ring free of rank 3 as a

Z-module), take (1, ω, θ) as a Z -basis for R . A ‘normal’ such basis

has ω · θ ∈ Z and one may define seven integers a, . . . ,n by setting

ωθ = n , ω2 = m + bω − aθ , θ2 = l + dω − cθ .

Then the associative law relations ωθ · θ = ω · θ2 and ω2 · θ = ωθ · θ
yield as unique solution

ωθ = −ad , ω2 = −ac + bω − aθ , θ2 = −bd + dω − cθ
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has ω · θ ∈ Z and one may define seven integers a, . . . ,n by setting

ωθ = n , ω2 = m + bω − aθ , θ2 = l + dω − cθ .

Then the associative law relations ωθ · θ = ω · θ2 and ω2 · θ = ωθ · θ
yield as unique solution

ωθ = −ad , ω2 = −ac + bω − aθ , θ2 = −bd + dω − cθ

and it follows that a binary cubic form det(Ax−By) leads to a

unique cubic ring.
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Bhargava notes that there is a canonical correspondence between

GL2(Z) equivalence classes of integral cubic forms and

isomorphism classes of cubic rings.

Specifically, given a cubic ring R (a ring free of rank 3 as a

Z-module), take (1, ω, θ) as a Z -basis for R . A ‘normal’ such basis

has ω · θ ∈ Z and one may define seven integers a, . . . ,n by setting

ωθ = n , ω2 = m + bω − aθ , θ2 = l + dω − cθ .

Then the associative law relations ωθ · θ = ω · θ2 and ω2 · θ = ωθ · θ
yield as unique solution

ωθ = −ad , ω2 = −ac + bω − aθ , θ2 = −bd + dω − cθ

and it follows that a binary cubic form det(Ax−By) leads to a

unique cubic ring. Moreover, a GL2(Z) transformation of the basis

(ω, θ) of R/Z (and a subsequent renormalisation) transforms

f(x, y) by the same transformation.
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Ideals in Cubic Rings

Bhargava calls a pair (I, I ′) of (fractional) ideals of R ‘balanced’ if

II ′ ⊆ R and Norm(I)Norm(I ′) = 1;
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Ideals in Cubic Rings

Bhargava calls a pair (I, I ′) of (fractional) ideals of R ‘balanced’ if

II ′ ⊆ R and Norm(I)Norm(I ′) = 1; loosely, an equivalence class of

balanced pairs is a pair of equivalence classes of ideals inverse to

one another in the ideal class group.

ceNTRe for Number Theory Research, Sydney



Composition of forms Richard Brent 60 July 21, 2006 13

Ideals in Cubic Rings

Bhargava calls a pair (I, I ′) of (fractional) ideals of R ‘balanced’ if

II ′ ⊆ R and Norm(I)Norm(I ′) = 1; loosely, an equivalence class of

balanced pairs is a pair of equivalence classes of ideals inverse to

one another in the ideal class group. Then the nondegenerate

orbits of Γ acting on the boxes of integers correspond to the

isomorphism classes of pairs
`
R, (I, I ′)

´
.
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Ideals in Cubic Rings

Bhargava calls a pair (I, I ′) of (fractional) ideals of R ‘balanced’ if

II ′ ⊆ R and Norm(I)Norm(I ′) = 1; loosely, an equivalence class of

balanced pairs is a pair of equivalence classes of ideals inverse to

one another in the ideal class group. Then the nondegenerate

orbits of Γ acting on the boxes of integers correspond to the

isomorphism classes of pairs
`
R, (I, I ′)

´
.

The explicit correspondence asks one to write I = 〈α1, α2, α3〉Z ,

I ′ = 〈α′
1, α

′
2, α

′
3〉Z and, recalling II ′ ⊆ R = 〈1, ω, θ〉, to compute all

the αiα′
j = cij + aijω + bijθ . Then A = (aij), B = (bij) will do.
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Ideals in Cubic Rings

Bhargava calls a pair (I, I ′) of (fractional) ideals of R ‘balanced’ if

II ′ ⊆ R and Norm(I)Norm(I ′) = 1; loosely, an equivalence class of

balanced pairs is a pair of equivalence classes of ideals inverse to

one another in the ideal class group. Then the nondegenerate

orbits of Γ acting on the boxes of integers correspond to the

isomorphism classes of pairs
`
R, (I, I ′)

´
.

The explicit correspondence asks one to write I = 〈α1, α2, α3〉Z ,

I ′ = 〈α′
1, α

′
2, α

′
3〉Z and, recalling II ′ ⊆ R = 〈1, ω, θ〉, to compute all

the αiα′
j = cij + aijω + bijθ . Then A = (aij), B = (bij) will do. This

all follows from the trivial case I = I ′ = R , when

(A, B) =

0BB@
2664

1

−a

1 −c

3775 ,

2664
1

1 b

d

3775
1CCA .
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The pair (A, B) just now given display the principal class of forms

defined by f .
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The pair (A, B) just now given display the principal class of forms

defined by f .

Manjul delightedly shows that, eventually, the R-module structure

of the I , respectively I ′ , given by the correspondence is explicitly

given in terms of determinants made from the columns,

respectively rows of A and B
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The pair (A, B) just now given display the principal class of forms

defined by f .

Manjul delightedly shows that, eventually, the R-module structure

of the I , respectively I ′ , given by the correspondence is explicitly

given in terms of determinants made from the columns,

respectively rows of A and B , instanced by

−ω · α1 = |B1A2A3| · α1 + |A1B1A3| · α2 + |A1A2B1| · α3

−ω · α2 = |B2A2A3| · α1 + |A1B2A3| · α2 + |A1A2B2| · α3

−ω · α3 = |B3A2A3| · α1 + |A1B3A3| · α2 + |A1A2B3| · α3

−θ · α1 = |A1B2B3| · α1 + |B1A1B3| · α2 + |B1B2A1| · α3

−θ · α2 = |A2B2B3| · α1 + |B1A2B3| · α2 + |B1B2A2| · α3

−θ · α3 = |A3B2B3| · α1 + |B1A3B3| · α2 + |B1B2A3| · α3
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Composition

Ultimately, composition is defined in terms of multiplication of

ideal pairs (I, I ′). Bhargava presses the analogy:
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Composition

Ultimately, composition is defined in terms of multiplication of

ideal pairs (I, I ′). Bhargava presses the analogy:

In the case of binary quadratic forms, the unique SL2(Z)-invariant

is the discriminant D , which classifies orders in quadratic fields.

The primitive classes having a fixed value of D form a group under

a certain natural composition law. This group is naturally

isomorphic to the narrow class group of the corresponding

quadratic order.
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Ultimately, composition is defined in terms of multiplication of

ideal pairs (I, I ′). Bhargava presses the analogy:

In the case of binary quadratic forms, the unique SL2(Z)-invariant

is the discriminant D , which classifies orders in quadratic fields.

The primitive classes having a fixed value of D form a group under

a certain natural composition law. This group is naturally

isomorphic to the narrow class group of the corresponding

quadratic order.

In the case of 2× 3× 3 integer boxes, the unique

SL3(Z)× SL3(Z)-invariant is the cubic form f , which classifies

orders in cubic fields. The projective classes having a fixed value

of f form a group under a certain natural composition law. This

group is naturally isomorphic to the ideal class group of the

corresponding cubic order.
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